
RoverBug: Long Range Navigation for

Mars Rovers

Sharon Laubach and Joel Burdick
California Institute of Technology

Pasadena, CA, USA
Sharon.Laubach@jpl.nasa.gov / jwb@robby.caltech.edu

Appeared in the International Symposium on Experimental Robotics (ISER’99),

Sydney, Australia, March 25-28,1999.

Abstract: After Mars Pathfinder’s success, a demand for new mobile
robots for planetary exploration arose. These robots must be able to au-
tonomously traverse long distances over rough, unknown terrain, under
severe resource constraints. We present the “RoverBug” algorithm, which
is complete, correct, requires minimal memory, and uses only on-board sen-
sors, which are guided by the algorithm to sense only the data needed for
navigation. The implementation of RoverBug on the Rocky7 Mars Rover
prototype at the Jet Propulsion Laboratory (JPL) is described, and exper-
imental results from operation in simulated martian terrain are presented.

1. Introduction
The Mars Pathfinder mission illustrated the benefits of including a mobile
robotic explorer on a planetary mission. While previous forays allowed only
remote exploration or were limited to a small site by an immobile lander, the
Sojourner rover was able to roam and to place its instruments on objects of
interest. Mars missions currently being planned call for new rovers capable of
operation for up to a year, compared to the 83 sols (martian days) of operation
for the Sojourner rover. The rovers are also required to traverse vastly greater
distances: up to 100m/sol, versus Sojourner’s 104m/83 sols. Lessons learned
from Mars Pathfinder indicate a need for significantly increased rover autonomy
in order to meet mission criteria within severe constraints including limited
communication opportunities with Earth, power, and computational capacity.

1.1. Motion Planning on Mars
A key advance in functionality required for planetary rovers is greater naviga-
tional autonomy. Given a goal which cannot be seen from the rover’s location,
the rover must use its sensors to navigate safely and accurately through un-
known, rough terrain to that goal, autonomously. This will require, in partic-
ular, improved motion planning and localisation algorithms.

Navigation techniques for planetary rovers must assume no prior knowl-
edge of the environment and must be sensor-based and robust. They must
also operate under severe constraints of power, computational resources, and
memory, due to the high cost of flight components. Due to dead reckoning
errors, slippage, nonholonomic fine-positioning constraints, and constraints on
mission time available, using rover motion to augment sensing is costly. Simul-
taneously, limited memory, computational capacity, power and time available
all argue for minimising the amount of data sensed and processed. Thus, prac-
tical navigation techniques must utilise the available sensing array in a scheme
which efficiently senses only the data needed for navigation, requires minimal
memory to store salient features of the environs, and conserves rover motion.



Figure 1. Typical terrain encountered on Mars by the Sojourner rover.

2. Relevant Work
Much of the work in motion planning can be divided into three major cate-
gories: “classical” path planners, heuristic planners, and “complete and cor-
rect” sensor-based motion planners. “Classical” planners assume full knowledge
of the environment, and are complete. Heuristic planners, generally based upon
a set of “behaviours,” can be used in unknown environments but may generate
long paths and do not guarantee the goal will ever be reached, nor that the algo-
rithm will halt. (A more detailed discussion is given in [1].) The third category,
which relies solely upon the rover’s sensors and yet guarantees completeness,
is most relevant to the problem of autonomous planetary navigation.

Two approaches to such planners adapt classical methods to local sensed
areas. One technique builds “roadmaps” using data from the visible region,
such as Choset’s HGVG [2], Rimon’s adaptation of Canny’s OPP [3], and the
TangentBug algorithm of Kamon, Rivlin, and Rimon [4]. The second approach
springs from approximate cell decomposition, filling in a grid-based world model
as information is gathered, exemplified by Stentz’ D* algorithm [5]. These
methods differ in their level of development for real systems. The sensor-
based version of OPP is currently strictly theoretical, owing to the difficult-to-
implement sensors required. The HGVG has been implemented on a mobile
robot using sonar sensors. This planner produces paths which are maximally
distant from obstacles, a plus for rover safety, but it works best in a contained
area—a description not applicable to the typical martian environment (Fig. 1).

The D* algorithm and TangentBug are both useful in unbounded envi-
ronments, and both produce “locally optimal” solutions: the resultant paths
are the shortest length possible using only local information. D* has been im-
plemented on an autonomous HMMWV; however, its grid-based world model
requires a significant amount of memory for storage, and the algorithm’s com-
pleteness depends upon the cell granularity of its world model.

TangentBug motivates the work presented here. Its world model is stream-
lined, comprising primarily the sensed obstacle endpoints. The planner consists
of two “modes”, motion-to-goal and boundary following, which interact to en-
sure global convergence if the goal is reachable, and which “fail gracefully” if
the goal is unreachable. The algorithm is memory-efficient, fairly robust, and
conserves robot motion. However, some of its assumptions do not apply to the
“rover problem” of navigating in planetary terrain: TangentBug assumes that
the robot is a point, that obstacles block both motion and sensing, and that
the robot’s sensors provide an omnidirectional view.



Figure 2. Rangemap data from a stereo pair. This image also shows detected obsta-
cles, and a path generated by the RoverBug algorithm (see Section 4).

The current plan for a rover sensing system consists of a mast-mounted
stereo pair of cameras that can pan and tilt. These cameras have a 30◦ to
45◦ field of view (FOV), and the “visible region” associated with these sensors
sweeps out roughly a wedge, with limited downrange radius R due to both
the tilt angle and camera resolution. (Fig. 2 shows data from such a sensing
array.) The rovers also feature chassis-mounted stereo pairs on the front and
back. Given the constraints described above, we cannot simply pan the mast-
mounted sensor array and combine many views to obtain a 360◦ view at each
step. Rather, the planner should be able to identify the minimal number of
sensor readings needed (and which specific areas to sense) to proceed at each
step, while avoiding unnecessary rover motion. Thus, we have developed the
“Wedgebug” algorithm and its extension, “RoverBug”, to address these issues
for flight microrovers. Wedgebug deals with the limited FOV of rovers in an ef-
ficient manner, minimising the need to sense and store data, using autonomous
gaze control. The RoverBug implementation discussed in Section 4 relaxes the
assumptions that the rover is a point robot, and that obstacles block sensing.

3. The Wedgebug Algorithm

Wedgebug assumes the following: The rover is modelled as a point robot in a 2D
world where every point is either contained within an impassable obstacle or lies
in freespace (F). Obstacles block both motion and sensing. The rover’s sensors,
from position x, detect ranges within a wedge Wi = W (x,~vi) which sweeps out
an angle 2α and is centered on the direction ~vi, where ∠(−→xT ,~vi) = 2iα (T is
the goal). Define C as the arc boundary of Wi at radius R, and ∂Wi as the
union of the two bounding rays of Wi (Fig. 3). The “interior” of Wi is defined
as int(Wi) = Wi − ∂Wi (an “interior” point may lie on C). Let d(a, b) be the
Euclidean distance between points a and b.

Wedgebug, like TangentBug, has two modes which interact to ensure global
convergence: motion-to-goal (MtG ) and boundary following (BF ). Each mode
is further divided into components to improve efficiency and handle the limited
FOV. At the robot’s initial position A, an initialisation step records the param-
eter dLeave = d(A, T ). This parameter marks the farthest the robot can stray
from T during an MtG segment. Thereafter, MtG is typically the dominant



R

W
α

 robot
sensor

vi
→

i

C
∂Wi

Figure 3. Anatomy of a wedge.

behaviour. It directs the robot to move toward the goal using a local version
of the tangent graph, restricted to the visible area (Fig. 4). The robot (at
position x) first senses a wedge, W0, directed toward the goal. The tangent
graph (or “reduced visibility graph”) is constructed, consisting of all line seg-
ments in F connecting x, T , and all obstacle vertices such that the segments are
tangent to any obstacles they encounter [6]. The local tangent graph within the
wedge W, LTG(W ), is defined as the tangent graph restricted to W. (Obstacle
boundaries appear as continuous contours in the range data; the endpoints of
these contours are called the “obstacle vertices”. Each endpoint e corresponds
to a discontinuity in the range data or to an intersection of a contour with
∂W or C.) The planner constructs LTG(W0). The planner optionally adds a
node, the projection of T onto C, so LTG(W0) contains a path directly towards
T . The planner then searches a subgraph, G1(W0), consisting of those nodes
closer to T than both the robot’s current position and dLeave, for the optimal
local subpath. Using the criteria in Section 3.1, the robot may scan additional
wedges, construct the LTG in the conglomerate wedge W (x) (see Section 3.1),
and search for a new subpath. After executing the resultant subpath, MtG
begins anew. This behaviour is continued until either the goal is reached, T
is deemed unreachable, or the robot encounters a local minimum in d(·, T ).
In the latter case, the planner switches to BF . The objective of this mode is
to skirt the boundary of the obstacle which contains the local minimum, still
calculating LTG(W0), until one of two events occur: either the robot completes
a loop, in which case T is unreachable and the algorithm halts; or LTG(W0)
contains a new subpath toward T and the planner switches back to MtG . Based
upon the two operational modes, MtG and BF , it can be proved that Wedge-
bug is complete and correct [7]. Practically, by implementing a form of gaze
control, the algorithm also deals with the limited FOV of flight rovers in a
manner which is efficient and minimises the need to sense and store data. Fur-
thermore, Wedgebug produces locally optimal paths. Hence, it is well suited
to conserving rover energy. The next two sections describe the MtG and BF
modes in more detail. (See [7] for a thorough description.)

robot

obstacle

goal

LTG nodes

LTGF

v
→

0

Figure 4. LTG calculated within W (x,~v0).



3.1. Motion-to-Goal
The goal of MtG is to move so the robot’s distance to T is nonincreasing.
During MtG , the robot can either move through F toward the goal (“direct
mode”), or it must skirt the boundary of an obstacle while moving toward T
(“sliding mode”). Further, “sliding mode” contains a submode, “virtual MtG ,”
to improve efficiency. That is, during normal MtG , the planner scans a single
wedge toward T to determine whether a path exists. If it is apparent that more
information could lead to a shortcut, “virtual MtG” scans additional wedges
in order to determine the appropriate path.

The first actions taken in a new MtG step are to scan W0, construct
LTG(W0), and search G1(W0). The shortest local path P will either aim di-
rectly toward T , or will pass through an endpoint e of a blocking obstacle (which
lies directly between x and T ). Call the point through which P passes—either
e, or the projection of T on C (Tg)—the focus point, F (Fig. 4). The focus
point (fixed for each step) is the goal for each MtG step: the subpath for the
current MtG step is precisely xF . Its position within the robot’s FOV deter-
mines whether additional wedge views are needed. Basically, if the subpath
moves the robot through the interior of the visible region, the robot executes
this subpath and begins the next MtG step. If, on the other hand, F lies on
the obstacle boundary, an additional view in this direction could produce a
shortcut around the blocking obstacle—that is, the robot could “virtually cir-
cumnavigate” a portion of the boundary without moving (see Fig. 5). The
“virtual MtG” mode ends when 1) the robot has found a suitable shortcut, so
the robot moves along this subpath and begins the next MtG step; 2) the rover
detects that it is sensing part of a region not useful for MtG , i.e. farther than
the rover from T ; or 3) the robot detects that the obstacle boundary is curv-
ing away from T , so the robot can no longer “virtually slide” in this direction
without losing ground. In the latter cases, if the rover has not yet established
a traversal direction, the robot attempts to round the obstacle in the opposing
direction. If this attempt fails, the robot has encountered a local minimum in
d(·, T ), and the planner switches to BF .

In order to prevent backtracking while circumnavigating an obstacle O
(both “virtually” and while moving), the algorithm establishes a traversal
direction—call it positive (ρ+)—upon first sensing O. Thereafter, the robot
must round the obstacle in only the positive direction, until (1) the blocking
obstacle is changed (including the case when F = Tg), (2) the robot detects

goal

robot

W
W

goal

robot

W

F

F

0 0
1

Figure 5. “Virtual MtG.” The figure on the left shows the first part of an MtG step.
The nodes of LTG(W0) are marked. F satisfies the conditions for “virtual MtG,” so
the robot scans W1 (right). Now, F ∈ int(W0 ∪W1), so “virtual MtG” ends.



goal

robot

W0

goal

robot

W
W0

1

goal

robot

W
W0

1

-1W
V

Figure 6. “Virtual BF.” The figure on the left depicts the first part of a “virtual BF”
step. The nodes of LTG(W0) are marked. Since @V ∈ int(LTG(W0)), the robot scans
W1 (center). Again, @V ∈ int(LTG(W0∪W1)), so the robot scans W−1 (right). Now,
V ∈ int(W0 ∪W1 ∪W−1), so “virtual BF” ends.

that it has completely circumnavigated O and the algorithm halts , or (3) the
planner switches to BF . The latter case occurs when the robot can no longer
decrease its distance to T—i.e, it has entered the basin of attraction of a local
minimum in d(·, T ).

3.2. Boundary Following
The goal of BF is to skirt the blocking obstacle O until progress can be made
once more toward T , thereby escaping a local minimum. As with MtG , BF
is split into two submodes. Normal BF uses two wedge views, one toward
T and one in the direction of travel around the obstacle boundary (ρ+), to
determine when a path towards T appears while the robot circumnavigates O.
Immediately after a switch from MtG to BF , however, ρ+ may not be defined.
In this case, “virtual BF” is used to take advantage of the information from the
current distance from O to choose this direction wisely. (The motivation for
“virtual BF ,” as for “virtual MtG ,” is the idea that it is less costly for the robot
to swivel its sensors than for the robot to move.) In essence, the robot swings
its sensors back and forth in a prescribed manner to search for the “best” place
to move and begin normal BF .

More precisely, the robot initially scans W1 = W (x,~v1), where the pos-
itive direction is chosen by comparing the tangents to ∂O at the wedge
boundary. The “steepest” side is chosen with the idea that the rover may
be able to progress further “virtually” in this direction. As before, let
W =

⋃sensed
Wk(x). The planner computes LTG(W ). Similarly to MtG , if

a shortcut is found through the interior of W , the robot moves along this path
and begins normal BF , first recording dreach, the closest distance to T found
along ∂O, ρ+, and Vloop, a marker used to detect whether the robot has looped
around O. Otherwise, the planner directs the sensor to scan W−1 = W (x,~v−1),
constructs W = W0 ∪W1 ∪W−1, and searches the freshly expanded LTG(W ).
In this manner, the robot scans back and forth until a suitable shortcut is
found, then travels it to begin normal BF . “Virtual BF” ends when one of
three events are detected: 1) a suitable shortcut is found, so the robot moves
along this subpath and begins normal BF ; 2) the latest wedge overlaps a previ-
ously scanned region—the robot is trapped by an encircling obstacle, and the
algorithm halts; and finally 3) “virtual BF” is no longer useful, since a second
obstacle obscures the blocking obstacle; the point where the two boundaries
“meet” is called the “framing point” Vf . If one such point is visible, the robot



scans once more in the opposing direction and “virtual BF” ends. If a shortcut
as in (1) is found, the robot moves there to begin normal BF . Otherwise, the
rover moves to the point on ∂O adjacent to Vf . If there are two such points, Vl
and Vr, the rover moves to the point which is “farthest around” the obstacle,
then begins normal BF .

To start a normal BF step, the robot senses W0 and searches G1(W0). BF
exits if: (1) T ∈ W0, in which case the robot moves to T and the algorithm
halts, or (2) ∃V ∈ G1(W0) such that d(V, T ) < dreach, the leaving condition, in
which case the planner sets dLeave to d(V, T ) and begins a new MtG segment.
If neither of these conditions hold, the planner directs the sensor to scan a
wedge Wx along the tangent to the obstacle boundary. If Vloop ∈Wx and it is
in the sensed portion of ∂O containing x, the robot has executed a loop—the
goal is unreachable, and the algorithm halts. Otherwise, the planner computes
the farthest the robot can traverse along ∂O in Wx. The robot records dreach,
moves, and begins a new BF step.

3.3. Sketch of Proof of Convergence

The proof of convergence for Wedgebug is similar to TangentBug’s proof [4].
Each robot motion can be characterised as a particular type of motion segment;
in turn, each type of segment can be shown to have finite length. Following
[4], it can be shown that there are a finite number of each type of segment,
so the path terminates after finite length. Due to space limitations, we detail
only the proof that BF segments have finite length. The proofs for the other
types of motion segments are analagous.

Define Si to be the point where the planner switches from MtG to BF
at obstacle Oi; Li the point where the leaving condition is met on Oi; and
finally Qi, the point where a loop is detected on Oi. There are two types of
BF segments: [Si, Li], and [Si, Qi]. Let Pi be the perimeter of obstacle Oi.

Lemma. BF segments are finite length.

Proof. a) [Si, Li]. Let N be the point where the robot first touches ∂Oi. The
path then consists of two pieces: [Si, N ] and [N,Li]. Since N and Li both lie
on ∂Oi, the robot is traversing Oi in a fixed direction, and the robot has not
detected a loop, we have length([N,Li]) ≤ length([N,Qi]) ≤ length([N,Vloop]).
Further, since Vloop is in the opposite direction from traversal, we know that
the segments NVloop and VloopN do not overlap. Therefore, since Pi is finite,
we have length([N,Li]) ≤ length([N,Vloop]) ≤ Pi <∞. Further, d(Si, N) ≤ R.
Thus, length([Si, Li]) ≤ d(Si, N) + length([N,Li]) ≤ R+ Pi <∞.

b) [Si, Qi]. Similarly, length([Si, Qi]) ≤ d(Si, N) + Pi ≤ R+ Pi <∞. ¤

4. Implementation and Results

An extended version of the Wedgebug algorithm, called “RoverBug,” has been
implemented on the JPL Rocky7 prototype microrover (Fig. 7), a research
vehicle designed to test technologies for future missions [8]. Rocky7, which at
60cm x 50cm x 35cm is roughly the same size as the Sojourner rover, has a few
important differences relevant to future rovers, including carrying three stereo



pairs of cameras for navigation: two body mounted, and one on a deployable
1.2m mast. In addition, the rover software features a localisation algorithm
utilising mast imagery to aid in dead-reckoning [9].

Although the Wedgebug algorithm is an important step, it still does not
capture the complexities of the real world. For instance, the rover is not a point
robot; a problem addressed in the RoverBug implementation by calculating the
obstacles’ “silhouettes”: the smallest polygon bounding the projection of each
SE(2) obstacle onto <2. Another issue arises since the mast imagery can “see
over” many obstacles: the resulting visible region is not a star-shaped set, and
the LTG is much richer than in the development in Section 3. Also, the mast
is limited in its ability to sense obstacles within 1m of the rover, since the
obstacle detection algorithm searches for steps in elevation, not easy to detect
while looking straight down on the tops of rocks. Thus, care must be taken
while executing the subpaths.

The experimental scenario is as follows: Rocky7 is situated in unknown,
rough terrain. The remote human operator views panoramic imagery returned
by the rover, or orbiter and/or descent imagery to designate a goal coordinate.
The operator then transmits the command to navigate to the goal, which sets
in motion the autonomous planner. RoverBug begins by directing the mast
to image towards the goal. Software on-board produces a rangemap, detects
obstacles, and computes the obstacles’ convex hulls. RoverBug then computes
the obstacles’ silhouettes, and searches the resulting LTG—which now truly
looks the part of a local tangent graph—to produce the first subpath (see Fig.
2). The planner directs the mast to look in the appropriate direction(s), and
incrementally builds and executes each subpath until the goal is reached.

As before, the motion-to-goal (MtG ) mode is the dominant behaviour,
moving the rover toward T monotonically, and boundary following (BF ) is used
to escape local minima in d(·, T ). However, rather than endowing each of these
modes with a “virtual” submode, we combine the two submodes into a single
“virtual sliding” (VS) mode in the interest of reducing the implementation’s
footprint, helping further minimise memory requirements. Upon detecting an
obstacle chain which prevents progress through the single wedge view used by
MtG to move toward the goal, the robot invokes VS mode. The purpose of

Figure 7. The Rocky7 Prototype Microrover. It is pictured in the JPL MarsYard, an
outdoor testing arena featuring simulated martian terrain.



VS mode is to scan one wedge at a time, back and forth, until enough of the
(visible) extent of the blocking obstacle has been seen1 in order to determine
which direction the robot should circumnavigate the obstacle chain. (Such a
chain can be seen spanning the end of the wedge in Fig. 2.) At this point,
RoverBug plans a path through the cumulative LTG (at x) to the appropriate
edge of the blocking obstacle (chain) boundary, and enters BF mode.

BF mode, in turn, relies upon the body-mounted stereo cameras to gather
information about obstacles, for two reasons: 1) the rover is likely too close
for mast imagery to be useful, and 2) since the mast should not be raised
while the rover moves, it would adversely affect the time required to navigate
if the mast were raised and lowered between each (small) BF step. Since
these cameras are fixed to the rover chassis, it is necessary to rotate the rover
itself to ensure views in the necessary directions. As with Wedgebug, each
BF step begins with a view toward the goal. If no obstacles are detected in
this direction, then the rover raises its mast to determine whether the leaving
condition (same as for Wedgebug) is satisfied. If the leaving condition holds,
the rover switches back to MtG . Otherwise, the rover turns in the direction of
circumnavigation, images the new region (with the body-mounted cameras),
and determines whether another view is required to advance as far as possible
around the obstacle boundary. In this wise, the rover uses its body cameras to
skirt the obstacle chain, taking shortcuts where possible, until either the rover
can again progress toward the goal, or until the robot has detected a loop. As
before, a loop indicates that the goal is unreachable, and the algorithm halts.

Finally, in order to cope with the limitations of dead reckoning, the locali-
sation algorithm described in [9] brackets each MtG step, to update the rover’s
knowledge of its position after executing each subpath, and each BF segment,
to relocalise the rover after it has skirted an obstacle boundary. (If the bound-
ary is particularly long, the rover may execute several localisation events along
the way, due to the short accuracy range of the localisation algorithm.)

The MtG mode of RoverBug has been tested extensively in the JPL
MarsYard, as well as in natural arroyo terrain, including traverses for tens
of meters requiring multiple iterations of the motion planning and localisation
algorithms. Figure 8 shows the processed experimental data from a 21m tra-
verse in the MarsYard. Each “wedge” in the figure depicts a projected view
of the rangemap computed from a stereo pair of (mast) images taken by the
rover during its traverse. That is, each wedge represents the rover’s FOV,
containing terrain height information. The polygons represent the inaccessible
regions around rocks deemed too large for rover traversal. The path superim-
posed on the figure is the path taken by the rover to avoid the rock obstacles
and reach the goal. The “jags” in the path represent localisation events where
dead reckoning is updated using the algorithm described in [9]. As in Fig. 2,
the silhouettes are computed within each wedge view, and a subpath gener-
ated, which is executed before the next wedge view is taken. The resultant
multi-step path runs from left to right.

1Note that in the RoverBug scenario, the frequency of “framing nodes” is significantly
reduced, since the rover can “see over” most obstacles.



Figure 8. Results from the JPL MarsYard. The path runs left to right. Each wedge
is a rangemap from mast imagery, extending roughly 5m from the imaging position.

5. Conclusion
The requirements for autonomous flight rovers for planetary exploration pro-
vide compelling motivation for work in sensor-based navigation. This paper
continues the work begun in [1] to develop, implement, and test a robust, prac-
tical path planner for the Rocky7 prototype microrover. We believe that the
RoverBug planner will significantly augment microrovers’ autonomous naviga-
tion ability, which in turn will aid in producing successful mobile robot missions.

Acknowledgments
The work described here was carried out at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics
and Space Administration. The authors acknowledge the Long Range Science
Rover team, particularly Samad Hayati, and the Mars Pathfinder Rover team,
for help, inspiration, and flight experience with a rover.

References
[1] Laubach S L, Burdick J W, Matthies L H 1998 An autonomous path-planner

implemented on the Rocky7 prototype microrover. Proc IEEE Conf Rob. Automat.

[2] Choset H 1996 Sensor based motion planning: the Hierarchical Generalized
Voronoi Graph. Ph.D. thesis, California Inst of Tech

[3] Rimon E, Canny J 1994 Construction of c-space roadmaps from local sensory
data: what should the sensors look for? Proc IEEE Conf Rob. Automat.

[4] Kamon I, Rimon E, Rivlin E 1995 A new range-sensor based globally convergent
navigation algorithm for mobile robots. CIS–Center of Intelligent Systems 9517,
Computer Science Dept, Technion, Israel

[5] Stentz A 1994 Optimal and efficient path planning for partially-known environ-
ments. Proc IEEE Conf Rob. Automat.

[6] Latombe J-C 1991 Robot Motion Planning. Kluwer Academic Publishers, Boston

[7] Laubach S L 1999 A practical autonomous sensor-based path planner for flight
planetary microrovers. Ph.D. thesis, California Inst of Tech

[8] Volpe R, Balaram J, Ohm T, Ivlev R 1996 The Rocky7 Mars Rover prototype.
Proc IEEE/RSJ Conf Intelligent Robots and Sys.

[9] Olson C, Matthies L 1998 Maximum likelihood rover localisation by matching
range maps. Proc IEEE Conf Rob. Automat.


